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Fashion is the way we present ourselves to the world and has become one of the world’s largest industries.

Fashion, mainly conveyed by vision, has thus attracted much attention from computer vision researchers in

recent years. Given the rapid development, this article provides a comprehensive survey of more than 200

major fashion-related works covering four main aspects for enabling intelligent fashion: (1) Fashion detec-

tion includes landmark detection, fashion parsing, and item retrieval; (2) Fashion analysis contains attribute

recognition, style learning, and popularity prediction; (3) Fashion synthesis involves style transfer, pose trans-

formation, and physical simulation; and (4) Fashion recommendation comprises fashion compatibility, outfit

matching, and hairstyle suggestion. For each task, the benchmark datasets and the evaluation protocols are

summarized. Furthermore, we highlight promising directions for future research.
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1 INTRODUCTION

Fashion is how we present ourselves to the world. The way we dress and do our makeup defines
our unique style and distinguishes us from other people. Fashion in modern society has become an
indispensable part of a person’s identity. Unsurprisingly, the global fashion apparel market alone
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has surpassed 3 trillion U.S. dollars today and accounts for nearly 2% of the world’s Gross Domestic
Product.1 Specifically, revenue in the fashion segment amounts to over U.S. $718 billion in 2020
and is expected to grow annually at a rate of 8.4%.2

As the revolution of computer vision (CV) with artificial intelligence (AI) is underway,
AI is starting to hit the field of fashion, thereby reshaping our fashion life with a wide range
of application innovations from electronic retailing to personalized stylist to the fashion design
process. In this article, we term CV-enabled fashion technology as intelligent fashion. Technically,
intelligent fashion is a challenging task, because, unlike generic objects, fashion items suffer from
significant variations in style and design, and, most importantly, the long-standing semantic gap
between computable low-level features and high-level semantic concepts that they encode is huge.

There are few previous works [120, 165] related to short fashion surveys. In 2014, Liu et al. [120]
presented an initial literature survey focused on intelligent fashion analysis with facial beauty and
clothing analysis, which introduced the representative works published during 2006–2013. How-
ever, thanks to the rapid development of computer vision, there are far more than these two do-
mains within intelligent fashion, e.g., style transfer, physical simulation, and fashion prediction.
There are a lot of related works that need to be updated. In 2018, Song and Mei [165] introduced
the progress in fashion research with multimedia, which categorized fashion tasks into three as-
pects: low-level pixel computation, mid-level fashion understanding, and high-level fashion anal-
ysis. Low-level pixel computation aims to generate pixel-level labels on the image, such as human
segmentation, landmark detection, and human pose estimation. Mid-level fashion understanding
aims to recognize fashion images, such as fashion items and fashion styles. High-level fashion anal-
ysis includes recommendation, fashion synthesis, and fashion trend prediction. However, there is
still a lack of a systematic and comprehensive surveys to paint the whole picture of intelligent
fashion so as to summarize and classify state-of-the-art methods, discuss datasets and evaluation
metrics, and provide insights for future research directions.

Current studies on intelligent fashion cover the research topics not only to detect what fashion
items are presented in an image but also analyze the items, synthesize creative new ones, and,
finally, provide personalized recommendations. Thus, in this article, we organize these research
topics accordingly, as categorized in Figure 1, which includes fashion image detection, analysis,
synthesis, and recommendation. In addition, we also give an overview of the main applications in
the fashion domain, showing the power of intelligent fashion in the fashion industry. Overall, the
contributions of our work can be summarized as follows:

• We provide a comprehensive survey of the current state-of-the-art research progress in the
fashion domain and categorize fashion research topics into four main categories: detection,
analysis, synthesis, and recommendation.

• For each category in the intelligent fashion research, we provide an in-depth and organized
review of the most significant methods and their contributions. Also, we summarize the
benchmark datasets as well as the links to the corresponding online portals.

• We gather evaluation metrics for different problems and also give performance comparisons
for different methods.

• We list possible future directions that would help upcoming advances and inspire the re-
search community.

This survey is organized in the following sections. Section 2 reviews fashion detection tasks,
including landmark detection, fashion parsing, and item retrieval. Section 3 illustrates the works

1https://fashionunited.com/global-fashion-industry-statistics/.
2https://www.statista.com/outlook/244/100/fashion/worldwide.
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Fig. 1. Scope of the intelligent fashion research topics covered in this survey article.

for fashion analysis containing attribute recognition, style learning, and popularity prediction.
Section 4 provides an overview of fashion synthesis tasks comprising style transfer, human pose
transformation, and physical texture simulation. Section 5 talks about works of fashion recom-
mendation involving fashion compatibility, outfit matching, and hairstyle suggestion. Besides, Sec-
tion 6 demonstrates selected applications and future work. Last, concluding remarks are given in
Section 7.

2 FASHION DETECTION

Fashion detection is a widely discussed technology, since most fashion works need detection first.
Take virtual try-on as an example [67]. It needs to early detect the human body part of the input
image for knowing where the clothing region is and then synthesize the clothing there. There-
fore, detection is the basis for most extended works. In this section, we mainly focus on fashion
detection tasks, which are split into three aspects: landmark detection, fashion parsing, and item
retrieval. For each aspect, state-of-the-art methods, the benchmark datasets, and the performance
comparison are rearranged.

2.1 Landmark Detection

Fashion landmark detection aims to predict the positions of functional keypoints defined on the
clothes, such as the corners of the neckline, hemline, and cuff. These landmarks not only indicate
the functional regions of clothes but also implicitly capture their bounding boxes, ensuring that the
design, pattern, and category of the clothes can be better distinguished. Indeed, features extracted
from these landmarks greatly facilitate fashion image analysis.

It is worth mentioning the difference between fashion landmark detection and human pose
estimation, which aims at locating human body joints, as Figure 2(a) shows. Fashion landmark
detection is a more challenging task than human pose estimation, as the clothes are intrinsically
more complicated than human body joints. In particular, garments undergo non-rigid deformations
or scale variations, while human body joints usually have more restricted deformations. Moreover,
the local regions of fashion landmarks exhibit more significant spatial and appearance variances
than those of human body joints, as shown in Figure 2(b).
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Fig. 2. (a) The visual difference between landmark detection and pose estimation. (b) The visual difference be-

tween the constrained fashion landmark detection and the unconstrained fashion landmark detection [209].

2.1.1 State-of-the-art Methods. The concept of fashion landmark was first proposed by Liu et
al. [123] in 2016, under the assumption that clothing bounding boxes are given as prior informa-
tion in both training and testing. For learning the clothing features via simultaneously predict-
ing the clothing attributes and landmarks, Liu et al. introduced FashionNet [123], a deep model.
The predicted landmarks were used to pool or gate the learned feature maps, which led to ro-
bust and discriminative representations for clothes. In the same year, Liu et al. also proposed the
deep fashion alignment (DFA) framework [124], which consists of a three-stage deep convo-

lutional neural network (CNN), where each stage subsequently refined previous predictions.
Yan et al. [209] further relaxed the clothing bounding box constraint, which is computationally
expensive and inapplicable in practice. The proposed Deep LAndmark Network (DLAN) com-
bined selective dilated convolution and recurrent spatial transformer, where bounding boxes and
landmarks were jointly estimated and trained iteratively in an end-to-end manner. Both Reference
[124] and Reference [209] are based on the regression model.

A more recent work [185] indicated that the regression model is highly non-linear and difficult
to optimize. Instead of regressing landmark positions directly, they proposed to predict a confi-
dence map of positional distributions (i.e., heatmap) for each landmark. Additionally, they took
into account the fashion grammar to help reason the positions of landmarks. For instance, “left

collar ↔ left waistline ↔ left hemline” connects a human-parts kinematic chain to be used as a
constraint on the connected clothing parts to model the grammar topology. The human anatom-
ical constraints were inherited in a recurrent neural network. Further, Lee et al. [96] considered
contextual knowledge of clothes and proposed a global-local embedding module for achieving
more accurate landmark prediction performance. Ge et al. [38] presented a versatile benchmark
Deepfashion2 for four tasks, clothes detection, pose estimation, human segmentation, and cloth-
ing retrieval, which covered most significant fashion detection works. They built a strong model
Match R-CNN based on Mask R-CNN [52] for solving the four tasks.

2.1.2 Benchmark Datasets. As summarized in Table 1, there are four benchmark datasets for
fashion landmark detection, and the most used is Fashion Landmark Dataset [124]. These datasets
differ in two major aspects: (1) standardization process of the images and (2) pose and scale vari-
ations.

2.1.3 Performance Evaluations. Fashion landmark detection algorithms output the landmark
(i.e., functional key point) locations in the clothing images. The normalized error (NE), which
is defined as the �2 distance between detected and the ground-truth landmarks in the normal-
ized coordinate space, is the most popular evaluation metric used in fashion landmark detection
benchmarks. Typically, smaller values of NE indicates better results.

ACM Computing Surveys, Vol. 54, No. 4, Article 72. Publication date: June 2021.
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Table 1. Summary of the Benchmark Datasets for Fashion Landmark Detection Task

Dataset name Publish time # of photos
# of landmark
annotations Key features Sources

DeepFashion-C
[123]

2016 289,222 8 Annotated with clothing bounding box, pose
variation type, landmark visibility, clothing type,
category, and attributes

Online shopping
sites, Google
Images

Fashion Landmark
Dataset (FLD) [124]

2016 123,016 8 Annotated with clothing type, pose variation type,
landmark visibility, clothing bounding box, and
human body joint

DeepFashion
[123]

Unconstrained
Land- mark
Database [209]

2017 30,000 6 The unconstrained datasets are often with
cluttered background and deviate from image
center. The visual comparison between
constrained and unconstrained dataset is
presented in Figure 2(b)

Fashion blogs
forums, Deep-
Fashion [123]

DeepFashion2 [38] 2019 491,000 over 3.5x of
Reference [123]

A versatile benchmark of four tasks including
clothes detection, pose estimation, segmentation,
and retrieval

Deep-Fashion
[123], Online
shopping sites

Table 2. Performance Comparisons of Fashion Landmark Detection Methods in Terms of NE

Dataset Method L. Collar R. Collar L. Sleeve R. Sleeve L. Waistline R. Waistline L. Hem R. Hem Avg.

DeepFashion -C [123]

DFA [124] 0.0628 0.0637 0.0658 0.0621 0.0726 0.0702 0.0658 0.0663 0.0660

DLAN [209] 0.0570 0.0611 0.0672 0.0647 0.0703 0.0694 0.0624 0.0627 0.0643

AttentiveNet [185] 0.0415 0.0404 0.0496 0.0449 0.0502 0.0523 0.0537 0.0551 0.0484

Global-Local [96] 0.0312 0.0324 0.0427 0.0434 0.0361 0.0373 0.0442 0.0475 0.0393

FLD [124]

DFA [124] 0.0480 0.0480 0.0910 0.0890 – – 0.0710 0.0720 0.0680

DLAN [209] 0.0531 0.0547 0.0705 0.0735 0.0752 0.0748 0.0693 0.0675 0.0672

AttentiveNet [185] 0.0463 0.0471 0.0627 0.0614 0.0635 0.0692 0.0635 0.0527 0.0583

Global-Local [96] 0.0386 0.0391 0.0675 0.0672 0.0576 0.0605 0.0615 0.0621 0.0568

“L. Collar” denotes left collar, while “R. Collar” denotes right collar.

“–” denotes that detailed results are not available.

Fig. 3. Examples of semantic segmentation for fashion images [78].

We list the performance comparisons of leading methods on the benchmark datasets in Table 2.
Moreover, the performances of the same method are different across datasets, but the rank is gen-
erally consistent.

2.2 Fashion Parsing

Fashion parsing, human parsing with clothes classes, is a specific form of semantic segmentation,
where the labels are based on the clothing items, such as dress or pants. An example of fashion
parsing is shown in Figure 3. Fashion parsing task distinguishes itself from general object or scene

ACM Computing Surveys, Vol. 54, No. 4, Article 72. Publication date: June 2021.
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segmentation problems in that fine-grained clothing categorization requires higher-level judgment
based on the semantics of clothing, the deforming structure within an image, and the potentially
large number of classes.

2.2.1 State-of-the-art Methods. The early work in fashion parsing was conducted by Yam-
aguchi et al. [206]. They exploited the relationship between clothing parsing and human pose
estimation by refining two problems mutually. Specifically, clothing labels for every image seg-
ment were predicted with respect to body parts in a Conditional Random Field model. Then the
predictions of clothing were incorporated as additional features for pose estimation. Their work,
however, mainly focused on constrained parsing problem, where test images were parsed given
user-provided tags indicating depicted clothing items. To overcome this limitation, References
[205, 207] proposed clothes parsing with a retrieval-based approach. For a given image, similar
images from a parsed dataset were first retrieved, and then the nearest-neighbor parsings were
transferred to the final result via dense matching. Since pixel-level labels required for model train-
ing were time-consuming, Liu et al. [116] introduced the fashion parsing task with weak super-
vision from the color-category tags instead of pixel-level tags. They combined the human pose
estimation module and (super)pixel-level category classifier learning module to generate category
classifiers. They then applied the category tags to complete the parsing task.

Different from the above-mentioned works that tended to consider the human pose first, which
might lead to sub-optimal results due to the inconsistent targets between pose estimation and
clothing parsing, recent research studies mainly attempted to relax this constraint. Dong et al. [32]
proposed to use Parselets, a group of semantic image segments obtained from a low-level over-
segmentation algorithm, as the essential elements. A Deformable Mixture Parsing Model based
on the “And-Or” structure of sub-trees was built to jointly learn and infer the best configuration
for both appearance and structure. Next, References [106, 212] exploited contexts of clothing con-
figuration, e.g., spatial locations and mutual relations of clothes items, to jointly parse a batch of
clothing images given the image-level clothing tags. The proposed Clothes Co-Parsing (CCP)

framework consists of two phases of inference: (1) image co-segmentation for extracting distin-
guishable clothes regions by applying exemplar-Support Vector Machine (SVM) classifiers, and
(2) region co-labeling for recognizing garment items by optimizing a multi-image graphical model.
Hidayati et al. [60] integrated local features and possible body positions from each superpixel as
the instances of the price-collecting Steiner tree problem.

In particular, the clothing parsing approaches based on hand-crafted processing steps need to be
designed carefully to capture the complex correlations between clothing appearance and structure
fully. To tackle this challenge, some CNN-based approaches have been explored. Liang et al. [107]
developed a framework based on active template regression to locate the mask of each semantic
label, rather than assigning a label to each pixel. Two separate convolutional neural networks were
utilized to build the end-to-end relation between the input image and the parsing result. Following
Reference [107], Liang et al. later built a Contextualized CNN architecture [108] to simultaneously
capture the cross-layer context, global image-level context, and local super-pixel contexts to im-
prove the accuracy of parsing results.

To address the issues of parametric and non-parametric human parsing methods that relied
on the hand-designed pipelines composed of multiple sequential components, such as in Refer-
ences [32, 116, 205, 206], Liu et al. presented a quasi-parametric human parsing framework [119].
The model inherited the merits of both parametric models and non-parametric models by the pro-
posed Matching Convolutional Neural Network, which estimated the matching semantic region
between the input image and KNN image. The works [41, 105] proposed self-supervised structure-
sensitive learning approaches to explicitly enforce the consistency between the parsing results and
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the human joint structures. In this way, there is no need for specifically labeling human joints in
model training.

Unlike previous approaches that only focused on a single-person parsing task, References [40,
152, 224] presented different methods for solving multi-person human parsing. Zhao et al. [224]
presented a deep Nested Adversarial Network3 that contained three Generative Adversar-

ial Network– (GAN) sub-nets for semantic saliency prediction, instance-agnostic parsing, and
instance-aware clustering, respectively. These three sub-nets jointly learned in an end-to-end
training way. Gong et al. [40] designed a detection-free Part Grouping Network (PGN) to deal
with multi-person human parsing in an image in a single pass. The proposed PGN integrates two
twinned subtasks that can be mutually refined under a unified network, i.e., semantic part segmen-
tation, and instance-aware edge detection. Further, Ruan et al. [152] proposed CE2P framework4

containing three key modules, a high-resolution embedding module, a global context embedding
module, and an edge perceiving module, for single human parsing. This work won first place within
all three human parsing tracks in the seond Look Into Person (LIP) Challenge.5 For multi-person
parsing, they designed a global-to-local prediction process based on CE2P cooperating with Mask
R-CNN to form an M-CE2P framework and achieved the multi-person parsing goal.

In 2019, hierarchical graph was considered for human parsing tasks [39, 187]. Wang et al. [187]
defined the human body as a hierarchy of multi-level semantic parts and employed three processes
(direct, top-down, and bottom-up) to capture the human parsing information for better parsing
performance. For tackling human parsing in various domain via a single model without retraining
on various datasets, Gong et al. [39] comprised hierarchical graph transfer learning based on the
conventional parsing network to constitute a general human parsing model, Graphonomy,6 which
consisted of two processes. It first learned and propagated compact high-level graph representation
among the labels within one dataset and then transferred semantic information across multiple
datasets.

2.2.2 Benchmark Datasets. There are multiple datasets for fashion parsing, most of which are
collected from Chictopia,7 a social networking website for fashion bloggers. Table 3 summarizes
the benchmark datasets for fashion parsing in more detail. To date, the most comprehensive one
is the LIP dataset [41, 105], containing over 50,000 annotated images with 19 semantic part labels
captured from a wider range of viewpoints, occlusions, and background complexity.

2.2.3 Performance Evaluations. There are multiple metrics for evaluating fashion parsing meth-
ods: (1) average Pixel Accuracy as the proportion of correctly labeled pixels in the whole image,
(2) mean Average Garment Recall, (3) Intersection over Union as the ratio of the overlapping area
of the ground truth and predicted area to the total area, (4) mean accuracy, (5) average precision,
(6) average recall, (7) average F-1 score over pixels, and (8) foreground accuracy as the number of
true pixels on the body over the number of actual pixels on the body.

In particular, most of the parsing methods are evaluated on Fashionista dataset [206] in terms
of accuracy, average precision, average recall, and average F-1 score over pixels. We report the
performance comparisons in Table 1 of Supplementary Material.

3https://github.com/ZhaoJ9014/Multi-Human-Parsing.
4https://github.com/liutinglt/CE2P.
5https://vuhcs.github.io/vuhcs-2018/index.html.
6https://github.com/Gaoyiminggithub/Graphonomy.
7http://chictopia.com.
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Table 3. Summary of the Benchmark Datasets for Fashion Parsing Task

Dataset name Publish time # of photos # of classes Key features Sources

Fashionista dataset [206] 2012 158,235 56 Annotated with tags, comments, and links Chictopia.com

Daily Photos [32] 2013 2,500 18 High resolution images; Parselet definition Chictopia.com

Paper Doll dataset [205, 207]
2013 339,797 56 Annotated with metadata tags denoting

characteris- tics, e.g., color, style, occasion,
clothing type, brand

Fashionista [206],
Chictopia.com

CCP SYSU-Clothes [106, 212] 2014 2,098 57 Annotated with superpixel-level or
image-level tags

Online shopping
websites

Colorful-Fashion Dataset [116] 2014 2,682 23 Annotated with 13 colors Chictopia.com

ATR [107]

Benchmark 2015 5,867 18 Standing people in frontal/near-frontal view
with good visibilities of all body parts

Fashionista [206],
Daily Photos [32],
Colorful-Fashion
Dataset [116]

Human Parsing
in the Wild

1,833 Annotated with pixel-level labels N/A

Chictopia10k [108] 2015 10,000 18 It contains real-world images with arbitrary
postures, views and backgrounds

Chictopia.com

LIP [41, 105] 2017 50,462 20 Annotated with pixelwise and body joints Microsoft
COCO [111]

PASCAL-Person-Part [196] 2017 3,533 14 It contains multiple humans per image in
uncon- strained poses and occlusions

N/A

MHP

v1.0 [98] 2017 4,980 18 There are 7 body parts and 11 clothes and
accessory categories

N/A

v2.0 [224] 2018 25,403 58 There are 11 body parts and 47 clothes and
accessory categories

N/A

Crowd Instance-level Human
Parsing [40]

2018 38,280 19 Multiple-person images; pixelwise
annotations in instance-level

Google, Bing

ModaNet [227] 2018 55,176 13 Annotated with pixel-level labels, bounding
boxes, and polygons

PaperDoll [205]

DeepFashion2 [38] 2019 491,000 13 A versatile benchmark of four tasks including
clothes detection, pose estimation,
segmentation, and retrieval.

DeepFashion [123],
Online shopping
websites

Fashionpedia [80] 2020 48,000 46 There are 294 fine-grained attributes. It
contains high resolution with 1710 × 2151 to
maintain more details

Flickr, Free license
photo websites

N/A: there is no reported information to cite.

2.3 Item Retrieval

As fashion e-commerce has grown over the years, there has been a high demand for innovative
solutions to help customers find preferred fashion items with ease. Though many fashion online
shopping sites support keyword-based searches, there are many visual traits of fashion items that
are not easily translated into words. It thus attracts tremendous attention from many research
communities to develop cross-scenario image-based fashion retrieval tasks for matching the real-
world fashion items to the online shopping image. Given a fashion image query, the goal of image-
based fashion item retrieval is to find similar or identical items from the gallery.

2.3.1 State-of-the-art Methods. The notable early work on automatic image-based clothing re-
trieval was presented by Wang and Zhang [190]. To date, extensive research studies have been de-
voted to addressing the problem of cross-scenario clothing retrieval, since there is a large domain
discrepancy between daily human photo captured in general environment and clothing images
taken in ideal conditions (i.e., embellished photos used in online clothing shops). Liu et al. [122]
proposed to utilize an unsupervised transfer learning method based on part-based alignment and

ACM Computing Surveys, Vol. 54, No. 4, Article 72. Publication date: June 2021.



Fashion Meets Computer Vision: A Survey 72:9

Fig. 4. (a) An illustration of exact clothing retrieval [45]. (b) An example for clothing attributes recognition.

features derived from the sparse reconstruction. Kalantidis et al. [86] presented clothing retrieval
from the perspective of human parsing. A prior probability map of the human body was obtained
through pose estimation to guide clothing segmentation, and then the segments were classified
through locality-sensitive hashing. The visually similar items were retrieved by summing up the
overlap similarities. Notably, References [86, 122, 190] are based on hand-crafted features.

With the advances of deep learning, there has been a trend of building deep neural network
architectures to solve the clothing retrieval task. Huang et al. [69] developed a Dual Attribute-

aware Ranking Network (DARN) to represent in-depth features using attribute-guided learn-
ing. DARN simultaneously embedded semantic attributes and visual similarity constraints into the
feature learning stage, while at the same time modeling the discrepancy between domains. Li et
al. [103] presented a hierarchical super-pixel fusion algorithm for obtaining the intact query cloth-
ing item and used sparse coding for improving accuracy. More explicitly, an over-segmentation hi-
erarchical fusion algorithm with human pose estimation was utilized to get query clothing items
and to retrieve similar images from the product clothing dataset.

The abovementioned studies are designed for similar fashion item retrieval. But more often,
people desire to find the same fashion item, as illustrated in Figure 4(a). The first attempt on this
task was achieved by Kiapour et al. [45], who developed three different methods for retrieving
the same fashion item in the real-world image from the online shop, the street-to-shop retrieval
task. The three methods contained two deep learning baseline methods, and one method aimed to
learn the similarity between two different domains, street and shop domains. For the same goal
of learning the deep feature representation, Wang et al. [188] adopted a Siamese network that
contained two copies of the Inception-6 network with shared weights. Also, they introduced a
robust contrastive loss to alleviate over-fitting caused by some positive pairs (containing the same
product) that were visually different, and used one multi-task fine-tuning approach to learn a bet-
ter feature representation by tuning the parameters of the siamese network with product images
and general images from ImageNet [27]. Further, Jiang et al. [83] extended the one-way prob-
lem, street-to-shop retrieval task, to the bi-directional problem, street-to-shop and shop-to-street
clothing retrieval task. They proposed a deep bi-directional cross-triplet embedding algorithm to
model the similarity between cross-domain photos, and further expanded the utilization of this
approach to retrieve a series of representative and complementary accessories to pair with the
shop item [84]. Moreover, Cheng et al. [24] increased the difficulty of image-based to video-based
street-to-shop retrieval tasks, which was more challenging because of the diverse viewpoint or
motion blur. They introduced three networks: Image Feature Network, Video Feature Network,
and Similarity Network. They first did clothing detection and tracking for generating clothing tra-
jectories. Then, Image Feature Network extracted deep visual features that would be fed into the
Long Short-Term Memory networks (LSTM) framework for capturing the temporal dynam-
ics in the Video Feature Network, and finally went to Similarity Network for pairwise matching.
For improving the existing algorithms for retrieval tasks, which only considered global feature
vectors, Reference [91] proposed a Graph Reasoning Network to build the similarity pyramid,
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Fig. 5. An example of interactive fashion item retrieval [90].

which represented the similarity between a query and a gallery clothing by considering both global
and local representation.

In the clothing retrieval methods described above, the retrieval is only based on query images
that reflect users’ needs, without considering that users may want to provide extra keywords to
describe the desired attributes that are absent in the query image. Toward this goal, Kovashka et
al. developed the WhittleSearch [90] that allows the user to upload a query image and provide
additional relative attribute description as feedback for iteratively refining the image retrieval re-
sults (see Figure 5). Besides, for advancing the retrieval task with attribute manipulation, given a
query image with attribute manipulation request, such as “I want to buy a jacket like this query
image, but with plush collar instead of round collar,” the memory-augmented Attribute Manip-
ulation Network [223] updated the query representation encoding the unwanted attributes and
replacing them to the desired ones. Later, Ak et al. [1] presented the FashionSearchNet to learn
regions and region-specific attribute representations by exploiting the attribute activation maps
generated by the global average pooling layer. Different from References [1, 223] that constructed
visual representation of searched item by manipulating the visual representation of query image
with the textual attributes in query text, Reference [92] inferred the semantic relationship between
visual and textual attributes in a joint multimodal embedding space. To help facilitate the reason-
ing of search results and user intent, Liao et al. [109] built the Exclusive and Independent tree, that
captured hierarchical structures of the fashion concepts, which was generated by incorporating
product hierarchies of online shopping websites and domain knowledge of fashion experts. It was
then applied to guide the end-to-end deep learning procedure, mapping the deep implicit features
to explicit fashion concepts.

As the fashion industry attracts much attention recently, there comes a multimedia grand chal-
lenge “AI meets beauty,”8 which aimed for competing for the top fashion item recognition methods,
held in ACM Multimedia yearly from 2018. Perfect Corp., CyberLink Corp., and National Chiao
Tung University in Taiwan held this grand challenge and provided a large-scale image dataset of
beauty and personal care products, namely the Perfect-500K dataset [23]. Lin et al. [112] received
the top performance in the challenge in 2019. They presented an unsupervised embedding learning
to train a CNN model and combined the existing retrieval methods trained on different datasets to
finetune the retrieval results.

2.3.2 Benchmark Datasets. The existing clothing retrieval studies mainly focused on a cross-
domain scenario. Therefore, most of the benchmark datasets were collected from daily photos and
online clothing shopping websites. Table 4 gives a summary and link of the download page (if
publicly available) of the benchmark datasets.

2.3.3 Performance Evaluations. There are some evaluation metrics used to assess the perfor-
mance of clothing retrieval methods. The different evaluation metrics used are as follows: (1) Top-k
retrieval accuracy, the ratio of queries with at least one matching item retrieved within the top-k
returned results, (2) Precision@k, the ratio of items in the top-k returned results that are matched

8https://challenge2020.perfectcorp.com/.
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Table 4. Summary of the Benchmark Datasets for Fashion Retrieval Task

Dataset name Publish time # of photos (videos) Key features Sources

Fashion 10000 [127] 2014 32,398 Annotated with 470 fashion categories Flickr.com

Deep Search [70] 2014 206,235 With template matching, 7 attributes and type
are extract- ed from the descriptions, i.e.
pattern, sleeve, button panel, collar, style, and
color

Taobao.com, Tsmall.com,
Amazon.com

DARN [69] 2015 545,373 Online-offline upper-clothing image pair,
annotated with clothing attribute categories

Online-shopping sites
and corresponding
customer review pages

Exact
Street-
2Shop [45]

Street photos 2015 20,357 39,479 pairs of exactly matching items worn
in street photos and shown in shop photos

ModCloth.com

Shop photos 404,683 Online clothing retailers

MVC [113] 2016 161,638 Annotated with 264 attribute labels Online shopping sites

Li et
al. [103]

Product
Clothing

2016 15,690 Annotated with clothing categories Online shopping sites

Daily Clothing 4,206 Flickr.com

DeepFashion (In-shop Clothes
Retrieval Benchmark) [123]

2016 52,712 The resolution of images is 256×256 Online shopping sites
(Forever21 and Mogujie),
Google Images

Video2Shop
[24]

Videos 2017 26,352 (526) 39,479 exact matching pairs annotated with 14
categories of clothes

Tmall MagicBox

Online shopping 85,677 Tmall.com, Taobao.com

Dress like a star [37] 2017 7,000,000 (40) It contains different movie genres such as
animation, fantasy, adventure, comedy or
drama

YouTube.com

Amazon [109] 2018 489,000 Annotated with 200 clothing categories Amazon.com

Perfect-500K [23] 2018 500,000 It is vast in scale, rich and diverse in content
to collect as many as possible beauty and
personal care items

e-commerce websites

DeepFashion2 [38] 2019 491,000 a versatile benchmark of four tasks including
clothes detection, pose estimation,
segmentation, and retrieval

DeepFashion [123],
Online shopping
websites

FindFashion [91] 2019 565,041 Merge two existing datasets, Street2Shop and
Deep- Fashion, and label three attributes of
the most affected

Street2Shop [45],
DeepFashion [123]

Ma et al. [132] 2020 180,000 Since dataset for attribute-specific fashion
retrieval is lacking, this dataset rebuild three
fashion dataset with attribute annotations

DARN [69],
FashionAI [232],
DeepFashion [123]

with the queries, (3) Recall@k, the ratio of matching items that are covered in the top-k returned
results, (4) Normalized Discounted Cumulative Gain (NDCG) (NDCG@k), the relative orders
among matching and non-matching items within the top-k returned results, and (5) Mean Aver-

age Precision (MAP), which measures the precision of returned results at every position in the
ranked sequence of returned results across all queries.

Table 2 of the Supplementary Material presents the performance comparisons of some retrieval
methods reviewed in this survey. We are unable to give comparisons for all different retrieval
methods, because the benchmarks they used are not consistent.

3 FASHION ANALYSIS

Fashion is not only about what people are wearing but also reveals personality traits and other
social cues. With immense potential in the fashion industry, precision marketing, sociological anal-
ysis, and so on, intelligent fashion analysis on what style people choose to wear has thus gained
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increasing attention in recent years. In this section, we mainly focus on three fields of fashion anal-
ysis: attribute recognition, style learning, and popularity prediction. For each field, state-of-the-art
methods, the benchmark datasets, and the performance comparison are summarised.

3.1 Attribute Recognition

Clothing attribute recognition is a multi-label classification problem that aims at determining
which elements of clothing are associated with attributes among a set of n attributes. As illus-
trated in Figure 4(b), a set of attributes is a mid-level representation generated to describe the
visual appearance of a clothing item.

3.1.1 State-of-the-art Methods. Chen et al. [14] learned a list of attributes for clothing on the
human upper body. They extracted low-level features based on human pose estimation and then
combined them for learning attribute classifiers. Mutual dependencies between the attributes cap-
turing the rules of style (e.g., neckties are rarely worn with T-shirts) were explored by a Con-

ditional Random Field (CRF) to make attribute predictions. A CRF-based model was also pre-
sented in Reference [208]. The model considered the location-specific appearance with respect to
a human body and the compatibility of clothing items and attributes, which was trained using a
max-margin learning framework.

Motivated by the large discrepancy between images captured in constrained and unconstrained
environments, Chen et al. [20] studied a cross-domain attribute mining. They mined the data from
clean clothing images obtained from online shopping stores and then adapted it to unconstrained
environments by using a deep domain adaptation approach. Lu et al. [170] further presented a
study on part-based clothing attribute recognition in a search and mining framework. The method
consists of three main steps: (1) Similar visual search with the assistance of pose estimation and
part-based feature alignment; (2) Part-based salient tag extraction that estimates the relationship
between tags and images by the analysis of intra-cluster and inter-cluster of clothing essential
parts; and (3) Tag refinement by mining visual neighbors of a query image. In the meantime, Li et al.
[101] learned to score the human body and attribute-specific parts jointly in a deep Convolutional
Neural Network, and further improved the results by learning collaborative part modeling among
humans and global scene re-scoring through deep hierarchical contexts.

Different from the above methods that conducted attribute recognition only based on annotated
attribute labels, References [26, 48, 177] proposed to identify attribute vocabulary using weakly
labeled image-text data from shopping sites. They used the neural activations in the deep net-
work that generated attribute activation maps through training a joint visual-semantic embedding
space to learn the characteristics of each attribute. In particular, Vittayakorn et al. [177] exploited
the relationship between attributes and the divergence of neural activations in the deep network.
Corbiere et al. [26] trained two different and independent deep models to perform attribute recog-
nition. Han et al. [48] derived spatial-semantic representations for each attribute by augmenting
semantic word vectors for attributes with their spatial representation.

Besides, there are research works exploring attributes for recognizing the type of clothing items.
Hidayati et al. [56] introduced clothing genre classification by exploiting the discriminative at-
tributes of style elements, with an initial focus on the upperwear clothes. The work in Refer-
ence [61] later extended [56] to recognize the lowerwear clothes. Yu and Grauman [218] proposed
a local learning approach for fine-grained visual comparison to predict which image is more related
to the given attribute. Jia et al. [79] introduced a notion of using the two-dimensional continuous
image-scale space as an intermediate layer and formed a three-level framework, i.e., visual fea-
tures of clothing images, image-scale space based on the aesthetic theory, and aesthetic words
space consisting of words like “formal” and “casual.” A Stacked Denoising Autoencoder Guided by
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Table 5. Summary of the Benchmark Datasets for Clothing Attribute Recognition Task

Dataset name
Publish

time # of photos
# of

categories
# of

attributes Key features Sources

Clothing Attributes [14] 2012 1,856 7 26 Annotated with 23 binary-class attri- butes
and 3 multi-class attributes

Thesartorialist.com,
Flickr.com

Hidayati et al. [56] 2012 1,077 8 5 Annotated with clothing categories Online shopping sites

UT-Zap50K shoe [218] 2014 50,025 N/A 4 Shoe images annotated with associated
metadata (shoe type, materials, gender,
manufacturer, etc.)

Zappos.com

Chen et al. [20] Online-data 2015 341,021 15 67 Each attribute has 1000+ images Online shopping sites

Street-data-a 685 N/A N/A Annotated with fine-grained attributes Fashionista [206]

Street-data-b 8,000 N/A N/A Parsing [31]

Street-data-c 4,200 N/A N/A Surveillance videos

Lu et al. [170] 2016 ∼1,1 M N/A N/A Annotated with the associated tags Taobao.com

WIDER Attribute [101] 2016 13,789 N/A N/A Annotated with 14 human attribute la- bels
and 30 event class labels

The 50574 WIDER
images [200]

Vittayakorn
et al. [177]

Etsy 2016 173,175 N/A 250 Annotated with title and description of the
product

Etsy.com

Wear 212,129 N/A 250 Annotated with the associated tags Wear.jp

DeepFashion-C [123] 2016 289,222 50 1,000 Annotated with clothing bounding box,
type, category, and attributes

Online shopping sites,
Google Images

Fashion200K [48] 2017 209,544 5 4,404 Annotated with product descriptions Lyst.com

Hidayati et al. [61] 2018 3,250 16 12 Annotated with clothing categories Online shopping sites

CatalogFashion-10x [8] 2019 1M 43 N/A The categories are identical to the
DeepFashion dataset [123]

Amazon.com

N/A: there is no reported information to cite.

Correlative Labels was proposed to map the visual features to the image-scale space. Ferreira et
al. [146] designed a visual semantic attention model with pose guided attention for multi-label
fashion classification. Besides the clothing attribute recognition works, micro expression recogni-
tion is also an interesting task [126, 199].

3.1.2 Benchmark Datasets. There have been several clothing attribute datasets collected, as the
older datasets are not capable of meeting the needs of the research goals. In particular, more recent
datasets have a more practical focus. We summarize the clothing attribute benchmark datasets in
Table 5 and provide the links to download if they are available.

3.1.3 Performance Evaluations. Metrics that are used to evaluate the clothing attribute recog-
nition models include the top-k accuracy, MAP, and Geometric Mean (G-Mean). The top-k accu-
racy and MAP have been described in Section 2.3.3, while G-Mean measures the balance between
classification performances on both the majority and minority classes. Most authors opt for a mea-
sure based on top-k accuracy. We present the evaluation for general attribute recognition on the
DeepFashion-C Dataset with different methods in Table 6. The evaluation protocol is released in
Reference [123].

3.2 Style Learning

A variety of fashion styles is composed of different fashion designs. Inevitably, these design ele-
ments and their interrelationships serve as the powerful source-identifiers for understanding fash-
ion styles. The key issue in this field is thus how to analyze discriminative features for different
styles and also learn what style makes a trend.
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Table 6. Performance Comparisons of Attribute Recognition Methods in Terms of

Top-k Classification Accuracy

Method
Category Texture Fabric Shape Part Style All

top-3 top-5 top-3 top-5 top-3 top-5 top-3 top-5 top-3 top-5 top-3 top-5 top-3 top-5

Chen et al. [14] 43.73 66.26 24.21 32.65 25.38 36.06 23.39 31.26 26.31 33.24 49.85 58.68 27.46 35.37

DARN [69] 59.48 79.58 36.15 48.15 36.64 48.52 35.89 46.93 39.17 50.14 66.11 71.36 42.35 51.95

FashionNet [123] 82.58 90.17 37.46 49.52 39.30 49.84 39.47 48.59 44.13 54.02 66.43 73.16 45.52 54.61

Corbiere et al. [26] 86.30 92.80 53.60 63.20 39.10 48.80 50.10 59.50 38.80 48.90 30.50 38.30 23.10 30.40

AttentiveNet [185] 90.99 95.78 50.31 65.48 40.31 48.23 53.32 61.05 40.65 56.32 68.70 74.25 51.53 60.95

The best result is marked in bold.

3.2.1 State-of-the-art Methods. An early attempt in fashion style recognition was presented by
Kiapour et al. [89]. They evaluated the concatenation of hand-crafted descriptors as style repre-
sentation. Five different style categories are explored, including hipster, bohemian, pinup, preppy,
and goth.

In the following studies [63, 82, 130, 164, 172], deep learning models were employed to represent
fashion styles. In particular, Simo-Serra and Ishikawa [164] developed a joint ranking and classi-
fication framework based on the Siamese network. The proposed framework was able to achieve
outstanding performance with features being the size of a SIFT descriptor. To further enhance
feature learning, Jiang et al. [82] used a consensus style centralizing auto-encoder to centralize
each feature of certain style progressively. Ma et al. introduced Bimodal Correlative Deep Au-

toencoder (BCDA) [130], a fashion-oriented multimodal deep learning based model adopted from
Bimodal Deep Autoencoder [138], to capture the correlation between visual features and fashion
styles. The BCDA learned the fundamental rules of tops and bottoms as two modals of clothing
collocations. The shared representation produced by BCDA was then used as input of the regres-
sion model to predict the coordinate values in the fashion semantic space that describes styles
quantitatively. Vaccaro et al. [172] presented a data-driven fashion model that learned the corre-
spondences between high-level style descriptions (e.g., “valentines day” and low-level design ele-
ments (e.g., “red cardigan” by training polylingual topic modeling. This model adapted a natural
language processing technique to learn latent fashion concepts jointly over the style and element
vocabularies. Different from previous studies that sought coarse style classification, Hsiao and
Grauman [63] treated styles as discoverable latent factors by exploring style-coherent represen-
tation. An unsupervised approach based on polylingual topic models was proposed to learn the
composition of clothing elements that are stylistically similar. Further, interesting work for learn-
ing the user-centric fashion information based on occasions, clothing categories, and attributes
was introduced by Ma et al. [131]. Their main goal is to learn the information about “what to wear
for a specific occasion?” from social media, e.g., Instagram. They developed a contextualized fash-
ion concept learning model to capture the dependencies among occasions, clothing categories, and
attributes.

Fashion Trends Analysis. A research pioneer in automatic fashion trend analysis was pre-
sented by Hidayati et al. [59]. They investigated fashion trends at ten different seasons of New
York Fashion Week by analyzing the coherence (to occur frequently) and uniqueness (to be suf-
ficiently different from other fashion shows) of visual style elements. Following Reference [59],
Chen et al. [17] utilized a learning-based clothing attributes approach to analyze the influence of
the New York Fashion Show on people’s daily life. Later, Gu et al. [43] presented QuadNet for
analyzing fashion trends from street photos. The QuadNet was a classification and feature embed-
ding learning network that consists of four identical CNNs, where the shared CNN was jointly
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optimized with a multi-task classification loss and a neighbor-constrained quadruplet loss. The
multi-task classification loss aimed to learn the discriminative feature representation, while the
neighbor-constrained quadruplet loss aimed to enhance the similarity constraint. A study on mod-
eling the temporal dynamics of the popularity of fashion styles was presented in Reference [53].
It captured fashion dynamics by formulating the visual appearance of items extracted from a deep
convolutional neural network as a function of time.

Further, for statistics-driven fashion trend analysis, Reference [18] analyzed the best-selling
clothing attributes corresponding to specific season via the online shopping websites statistics,
e.g., (1) winter: gray, black, and sweater; (2) spring: white, red, and v-neckline. They designed
a machine learning based method considering the fashion item sales information and the user
transaction history for measuring the real impact of the item attributes to customers. Besides the
fashion trend learning related to online shopping websites was considered, Ha et al. [46] used
fashion posts from Instagram to analyze visual content of fashion images and correlated them with
likes and comments from the audience. Moreover, Chang et al. achieved an interesting work [12]
on what people choose to wear in different cities. The proposed “Fashion World Map” framework
exploited a collection of geo-tagged street fashion photos from an image-centered social media
site, Lookbook.nu. They devised a metric based on deep neural networks to select the potential
iconic outfits for each city and formulated the detection problem of iconic fashion items of a city
as the prize-collecting Steiner tree problem. A similar idea was proposed by Mall et al. [133] in
2019; they established a framework9 for automatically analyzing the fashion trend worldwide in
item attributes and style corresponding to the city and month. Specifically, they also analyzed how
social events impact people wear, e.g., “new year in Beijing in February 2014” leads to red upper
clothes.

Temporal estimation is an interesting task for general fashion trend analysis, the goal of which is
to estimate when a style was made. Although visual analysis of fashion styles have been much in-
vestigated, this topic has not received much attention from the research community. Vittayakorn et
al. [176] proposed an approach to the temporal estimation task using CNN features and fine-tuning
new networks to predict the time period of styles directly. This study also provided estimation
analyses of what the temporal estimation networks have learned.

3.2.2 Benchmark Datasets. Table 7 compares the benchmark datasets used in the literature.
Hipster Wars [89] is the most popular dataset for style learning. We note that, instead of using the
same dataset for training and testing, the study in Reference [164] used Fashion144k dataset [163]
to train the model and evaluated it on Hipster Wars [89]. Moreover, the datasets related to fashion
trend analysis were mainly collected from online media platforms during a specific time interval.

3.2.3 Performance Evaluations. The evaluation metrics used to measure the performance of
existing fashion style learning models are precision, recall, and accuracy. Essentially, precision
measures the ratio of retrieved results that are relevant, recall measures the ratio of relevant re-
sults that are retrieved, while accuracy measures the ratio of correct recognition. Although several
approaches for fashion temporal analysis have been proposed, there is no extensive comparison
between them. It is an open problem to determine which of the approaches perform better than
others.

3.3 Popularity Prediction

Precise fashion trend prediction is not only essential for fashion brands to strive for the global
marketing campaign but also crucial for individuals to choose what to wear corresponding to the

9https://github.com/kavitabala/geostyle.
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Table 7. Summary of the Benchmark Datasets for Style Learning Task

Dataset name Publish time # of photos Key features Sources

Hipster Wars [89] 2014 1,893 Annotated with Bohemian, Goth, Hipster, Pinup, or
Preppy style

Google Image
Search

Hidayati et al. [59] 2014 3,276 Annotated with 10 seasons of New York Fashion
Week (Spring/Summer 2010 to Autumn/Winter 2014)

FashionTV.com

Fashion144k [163] 2015 144,169 Each post contains text in the form of descriptions
and gar- ment tags. It also consists of “likes” for
scaling popularity

Chictopia.com

Chen et al. [17] Street-chic 2015 1,046 Street-chic images in New York from April 2014 to
July 2014 and from April 2015 to July 2015

Flickr.com,
Pinterest.com

New York Fashion Show 7,914 2014 and 2015 summer/spring New York Fashion
Show

Vogue.com

Online Shopping [82] 2016 30,000 The 12 classes definitions are based on the fashion
maga- zine [11]

Nordstrom.com,
barneys.com

Fashion Data [172] 2016 590,234 Annotated with a title, text description, and a list of
items the outfit comprises

Polyvore.com

He and McAuley
et al. [53]

Women 2016 331,173 Annotated with users’ review histories, time span
between March 2003 and July 2014

Amazon.com

Men 100,654

Vittayakorn et al. [176] Flickr Clothing 2017 58,350 Annotated with decade label and user provided
metadata

Flickr.com

Museum Dataset 9,421 Annotated with decade label museum

Street Fashion Style [43] 2017 293,105 Annotated with user-provided tags, including
geographical and year information

Chictopia.com

Global Street Fashion (GSFashion) [12] 2017 170,180 Annotated with (1) city name, (2) anonymized user
ID, (3) anonymized post ID, (4) posting date, (5)
number of likes of the post, and (6) user-provided
metadata descri- bing the categories of fashion items
along with the brand names and the brand-defined
product categories

Lookbook.nu

Fashion Semantic Space [130] 2017 32,133 Full-body fashion show images; annotated with visual
features (e.g., collar shape, pants length, or color
theme.) and fashion styles (e.g., casual, chic, or
elegant).

Vogue.com

Hsiao and Grauman [63] 2017 18,878 Annotated with associated attributes Google Images

Ha et al. [46] 2017 24,752 It comprises description of images, associated
metadata, and annotated and predicted visual content
variables

Instagram

Geostyle [133] 2019 7.7M This dataset includes categories of 44 major world
cities across 6 continents, person body and face
detection, and canonical cropping

Street Style [135],
Flickr100M [178]

FashionKE [131] 2019 80,629 With the help of fashion experts, it contains 10
common types of occasion concepts, e.g., dating,
prom, or travel

Instagram

M means million.

specific occasion. Based on the fashion style learning via the existing data (e.g., fashion blogs), it
can better predict fashion popularity and further forecast future trend, which profoundly affect
the fashion industry about multi-trillion U.S. dollars.

3.3.1 State-of-the-art Methods. Despite the active research in popularity prediction of online
content on general photos with diverse categories [55, 134, 186, 192, 194], the popularity predic-
tion on online social network specialized in fashion and style is currently understudied. The work
in Reference [204] presented a vision-based approach to quantitatively evaluate the influence of
visual, textual, and social factors on the popularity of outfit pictures. They found that the combina-
tion of social and content information yields a good predictory for popularity. In Reference [142],
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Park et al. applied a widely-used machine learning algorithm to uncover the ingredients of success
of fashion models and predict their popularity within the fashion industry by using data from so-
cial media activity. Recently, Lo et al. [125] proposed a deep temporal sequence learning framework
to predict the fine-grained fashion popularity of an outfit look.

Discovering the visual attractiveness has been the pursuit of artists and philosophers for cen-
turies. Nowadays, the computational model for this task has been actively explored in the multi-
media research community, especially with the focus on clothing and facial features. Nguyen et
al. [139] studied how different modalities (i.e., face, dress, and voice) individually and collectively
affect the attractiveness of a person. A tri-layer learning framework, namely Dual-supervised
Feature-Attribute-Task network, was proposed to learn attribute models and attractiveness mod-
els simultaneously. Chen et al. [21] focused on modeling fashionable dresses. The framework was
based on two main components: basic visual pattern discovery using active clustering with humans
in the loop, and latent structural SVM learning to differentiate fashionable and non-fashionable
dresses. Next, Simo-Serra et al. [163] not only predicted the fashionability of a person’s look on
a photograph but also suggested what clothing or scenery the user should change to improve the
look. For this purpose, they utilized a Conditional Random Field model to learn correlation among
fashionability factors, such as the type of outfit and garments, the type of the user, and the scene
type of the photograph.

Meanwhile, the aesthetic quality assessment of online shopping photos is a relatively new area
of study. A set of features related to photo aesthetic quality is introduced in Reference [181]. To
be more specific, in this work, Wang and Allebach investigated the relevance of each feature to
aesthetic quality via the elastic net. They trained an SVM predictor with an optimal feature subset
constructed by a wrapper feature selection strategy with the best-first search algorithm.

Other studies built computational attractiveness models to analyze facial beauty. A previous sur-
vey on this task was presented in Reference [115]. Since some remarkable progress have been made
on this subject, we extend [115] to cover recent advancements. Chen and Zhang [13] introduced
a causal effect criterion to evaluate facial attractiveness models. It proposed two-way measure-
ments, i.e., by imposing interventions according to the model and by examining the change of
attractiveness. To alleviate the need for rating history for the query, which prior works could not
cope when there are none or few, Rothe et al. [150] proposed to regress visual query to a latent
space derived through matrix factorization for the known subjects and ratings. Besides, they em-
ployed a visual regularized collaborative filtering approach to infer inter-person preferences for
attractiveness prediction. A psychologically inspired deep convolutional neural network

(PI-CNN), which is a hierarchical model that facilitates both the facial beauty representation learn-
ing and predictor training, was later proposed in Reference [201]. To optimize the performance of
the PI-CNN facial beauty predictor, Reference [201] introduced a cascaded fine-tuning scheme
that exploits appearance features of facial detail, lighting, and color. To further consider the facial
shape, Gao et al. [36] designed a multi-task learning framework that took appearance and facial
shape into account simultaneously and jointly learned facial representation, landmark location,
and facial attractiveness score. They proved that learning with landmark localization is effective
for facial attractiveness prediction. For building flexible filters to learn the mapping adaptive for
different attributes within a deep modal, Lin et al. [110] proposed an attribute-aware convolutional
neural network whose filter parameters were controlled adaptively by facial attributes. They also
considered the cases without attribute labels and presented a pseudo attribute-aware network,
which learned to utilize image context information for generating attribute-like knowledge. More-
over, Shi et al. [158] introduced a co-attention learning mechanism that employed facial parsing
masks for learning accurate representation of facial composition to improve facial attractiveness
prediction.
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Table 8. Summary of the Benchmark Datasets for Popularity Prediction Task

Dataset name Publish time # of photos Key features Source

Yamaguchi et al. [204] 2014 328,604 Annotated with title, description, and user-provided labels Chictopia.com

SCUT-FBP [198] 2015 500 Asian female face images with attractiveness ratings Internet

Fashion144k [163] 2015 144,169 Each post contains text in the form of descriptions and garment
tags. It also consists of votes or “likes” for scaling popularity

Chictopia.com

Park et al. [142] Fashion Model
Directory

2016 N/A Profile of fashion models, including name, height, hip size,
dress size, waist size, shoes size, list of agencies, and details
about all runways the model walked on (year, season, and city)

Fashionmodel-
directory.com

Instagram Annotated with the number of “likes” and comments, as well as
the metadata of the first 125 “likes” of each post

Instagram

TPIC17 [192] 2017 680,000 With time information Flickr.com

Massip et al. [134] 2018 6,000 Using textual queries with hashtags of targeted image
categories to collect, e.g., #selfie, or #friend

Instagram

SCUT-FBP5500 [104] 2018 5,500 Frontal faces with various properties (gender, race, ages) and
div- erse labels (face landmark and beauty score)

Internet

Lo et al. [125] 2019 380,000 Within 52 different cities and the timeline was between
2008–2016

lookbook.nu

SMPD2019 [193] 2019 486,000 It contains rich contextual information and annotations Flickr.com

N/A: there is no reported information to cite.

There was a Social Media Prediction challenge10 held by Wu et al. [193] in ACM Multimedia
2019 that aimed at the work focused on predicting future clicks of new social media posts before
they were posted in social feeds. The participated teams need to build a new algorithm based on
understanding and learning techniques and automatically predict popularity (formulated by clicks
or visits) to achieve better performances.

Fashion Forecasting. There are strong practical interests in fashion sales forecasting, either
by utilizing traditional statistical models [25, 140], applying artificial intelligence models [6], or
combining the advantages of statistics-based methods and artificial intelligence-based methods
into hybrid models [16, 88, 148]. However, the problem of visual fashion forecasting, where the
goal is to predict the future popularity of styles discovered from fashion images, has gained limited
attention in the literature. In Reference [2], Al-Halah et al. proposed to forecast the future visual
style trends from fashion data in an unsupervised manner. The proposed approach consists of
three main steps: (1) learning a representation of fashion images that captures clothing attributes
using a supervised deep convolutional model; (2) discovering the set of fine-grained styles that are
distributed across images using a non-negative matrix factorization framework; and (3) construct-
ing styles’ temporal trajectories based on statistics of past consumer purchases for predicting the
future trends.

3.3.2 Benchmark Datasets. We summarize the benchmark datasets used to evaluate the popu-
larity prediction models reviewed above in Table 8. There are datasets focused on face attractive-
ness called SCUT-FBP [198] and SCUT-FBP5500 [104]. Also, SMPD2019 [193] is specific for social
media prediction.

3.3.3 Performance Evaluations. Mean Absolute Percentage Error, Mean Absolute Error, Mean
Square Error, and Spearman Ranking Correlation (SRC) are the most used metrics to evaluate
the popularity prediction performance. SRC is to measure the ranking correlation between ground-
truth popularity set and predicted popularity set, varying from 0 to 1.

10http://www.smp-challenge.com/.
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Fig. 6. (a) Facial makeup transfer [15]. (b) Facial makeup detection and removal [184]. (c) Comparison of

VITON [51] and CP-VTON [179].

4 FASHION SYNTHESIS

Given an image of a person, we can imagine what that person would like in a different makeup
or clothing style. We can do this by synthesizing a realistic-looking image. In this section, we
review the progress to address this task, including style transfer, pose transformation, and physical
simulation.

4.1 Style Transfer

Style transfer is transferring an input image into a corresponding output image such as transfer-
ring a real-world image into a cartoon-style image, transferring a non-makeup facial image into
a makeup facial image, or transferring the clothing, which is tried on the human image, from one
style to another. Style transfer in image processing contains a wide range of applications, e.g.,
facial makeup and virtual try-on.

4.1.1 State-of-the-art Methods. The most popular style transfer work is pix2pix [73], which is
a general solution for style transfer. It learns not only the mapping from the input image to output
image but also a loss function to train the mapping. For specific goal, based on a texture patch,
References [81, 197]11 transferred the input image or sketch to the corresponding texture. Based on
the human body silhouette, References [49, 94] inpainted compatible style garments to synthesize
realistic images. An interesting work [159] learned to transferred the facial photo into the game
character style.

Facial Makeup. Finding the most suitable makeup for a particular human face is challenging,
given the fact that a makeup style varies from face-to-face due to the different facial features.
Studies on how to automatically synthesize the effects of with or without makeup on one’s facial
appearance have aroused interest recently. There is a survey on computer analysis of facial beauty
provided in Reference [95]. However, it is limited to the context of the perception of attractiveness.

Facial makeup transfer refers to translate the makeup from a given face to another one while
preserving the identity as Figure 6(a). It provides an efficient way for virtual makeup try-on and
helps users select the most suitable makeup style. The early work achieved this task by image pro-
cessing methods [97], which decomposed images into multiple layers and transferred information
from each layer after warping the reference face image to a corresponding layer of the non-makeup
one. One major disadvantage of this method was that it required warping the reference face image
to the non-makeup face image, which was very challenging and inclined to generate artifacts in
many cases. Liu et al. [121] first adopted a deep learning framework for makeup transfer. They em-
ployed several independent networks to transfer each cosmetic on the corresponding facial part.
The simple combination of several components applied in this framework, however, leads to un-
natural artifacts in the output image. To address this issue, Alashkar et al. [3] trained a deep neural

11https://github.com/janesjanes/Pytorch-TextureGAN.
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network based makeup recommendation model from examples and knowledge base rules jointly.
The suggested makeup style was then synthesized on the subject face.

Different makeup styles result in significant facial appearance changes, which brings challenges
to many practical applications, such as face recognition. Therefore, researchers also devoted them-
selves to makeup removal as Figure 6(b), which is an ill-posed problem. Wang and Fu [184] pro-
posed a makeup detector and remover framework based on locality-constrained dictionary learn-
ing. Li et al. [102] later introduced a bi-level adversarial network architecture, where the first
adversarial scheme was to reconstruct face images, and the second was to maintain face identity.

Unlike the aforementioned facial makeup synthesis methods that treat makeup transfer and re-
moval as separate problems, References [10, 15, 42, 99] performed makeup transfer and makeup
removal simultaneously. Inspired by CycleGAN architecture [230], Chang et al. [10] introduced
the idea of asymmetric style transfer and a framework for training both the makeup transfer and
removal networks together, each one strengthening the other. Li et al. [99] proposed a dual in-
put/output generative adversarial network called BeautyGAN for instance-level facial makeup
transfer. More recent work by Chen et al. [15] presented BeautyGlow that decomposed the la-
tent vectors of face images derived from the Glow model into makeup and non-makeup latent
vectors. For achieving better makeup and de-makeup performance, Gu et al. [42] focused on lo-
cal facial details transfer and designed a local adversarial disentangling network that contained
multiple and overlapping local adversarial discriminators.

Virtual Try-On. Data-driven clothing image synthesis is a relatively new research topic that
is gaining more and more attention. In the following, we review existing methods and datasets
for addressing the problem of generating images of people in clothing by focusing on the styles.
Han et al. [51] utilized a coarse-to-fine strategy. Their framework, VIrtual Try-On Network (VI-

TON), focused on trying an in-shop clothing image on a person image. It first generated a coarse
tried-on result and predicted the mask for the clothing item. Based on the mask and coarse re-
sult, a refinement network for the clothing region was employed to synthesize a more detailed
result. However, Reference [51] fails to handle large deformation, especially with more texture
details, due to the imperfect shape-context matching for aligning clothes and body shape. There-
fore, a new model called Characteristic-Preserving Image-based Virtual Try-On Network

(CP-VTON) [179] was proposed. The spatial deformation can be better handled by a Geometric
Matching Module, which explicitly aligned the input clothing with the body shape. The compar-
isons of VITON and CP-VTON are given in Figure 6(c). There were several improved works [4, 76,
210, 220] based on CP-VTON. Different from the previous works that needed the in-shop clothing
image for virtual try-on, FashionGAN [231] and M2E-TON [195] presented target try-on clothing
image based on text description and model image respectively. Given an input image and a sen-
tence describing a different outfit, FashionGAN was able to “redress” the person. A segmentation
map was first generated with a GAN according to the description. Then, the output image was ren-
dered with another GAN guided by the segmentation map. M2E-TON was able to try on clothing
from humanA image to humanB image, and two people can perform in different poses. Consid-
ering the runtime efficacy, Issenhuth et al. [74] proposed a parser free virtual try-on network. It
designs a teacher-student architecture to free the parsing process during the inference time for
improving efficiency.

Viewing the try-on performance from different views is also essential for virtual try-on task, Fit-
Me [66] was the first work to do virtual try-on with arbitrary poses in 2019. They designed a coarse-
to-fine architecture for both pose transformation and virtual try-on. Further, FashionOn [67] ap-
plied the semantic segmentation for detailed part-level learning and focused on refining the fa-
cial part and clothing region to present more realistic results. They succeeded in preserving de-
tailed facial and clothing information, perform dramatic posture, and also resolve the human limb

ACM Computing Surveys, Vol. 54, No. 4, Article 72. Publication date: June 2021.



Fashion Meets Computer Vision: A Survey 72:21

Table 9. Summary of the Benchmark Datasets for Style Transfer Task

Task Dataset name
Publish

time # of photos Key features Sources

Facial
Makeup

Liu et al. [121] 2016 2,000 1000 non-makeup faces and 1000 reference faces N/A

Stepwise Makeup
[184]

2016 1,275 Images in 3 sub-regions (eye, mouth, and skin);
labeled with procedures of makeup

N/A

Beauty [228] 2017 2,002 1,001 subjects, where each subject has a pair of photos
being with and without makeup

The Internet

Before-After
Makeup[3]

2017 1,922 961 different females (224 Caucasian, 187 Asian, 300
African, and 250 Hispanic) where one with clean face
and another after pro- fessional makeup; annotated
with facial attributes

N/A

Chang et al. [10] 2018 2,192 1,148 non-makeup images and 1,044 makeup images Youtube makeup tutorial
videos

Makeup Transfer [99] 2018 3,834 1,115 non-makeup images and 2,719 makeup images;
assembled with 5 different makeup styles
(smoky-eyes, flashy, Retro, Ko- rean, and Japanese
makeup styles), varying from subtle to heavy

N/A

LADN [42] 2019 635 333 non-makeup images and 302 makeup images The Internet

Makeup-Wild [85] 2020 772 369 non-makeup images and 403 makeup images The Internet

Virtual
Try-On

LookBook [217] 2016 84,748 The 9,732 top product images are associated with
75,016 fashion model images

Bongjashop, Jogunshop,
Stylenanda, SmallMan,
WonderPlace

DeepFashion [123] 2016 78,979 The corresponding upper-body images, sentence
descriptions, and human body segmentation maps

Forever21

CAGAN [77] 2017 15,000 Frontal view human images and paired upper-body
garments (pullovers and hoodies)

Zalando.com

VITON [51] 2018 32,506 Pairs of frontal-view women and top clothing images N/A

FashionTryOn [226] 2019 28,714 Pairs of same person with same clothing in 2 different
poses and one corresponding clothing image

Zalando.com

FashionOn [67] 2019 22,566 Pairs of same person with same clothing in 2 different
poses and one corresponding clothing image

The Internet,
DeepFashion [123]

Video Virtual Try-on
[30]

2019 791 videos Each video contains 250–300 frame numbers fashion model catwalk

N/A: there is no reported information to cite.

occlusion problem in CP-VTON. Similar architecture to CP-VTON for virtual try-on with arbi-
trary poses was presented in Reference [226]. They further made body shape mask prediction at
the beginning of the first stage for pose transformation, and, in the second stage, they presented an
attentive bidirectional GAN to synthesize the final result. For pose-guided virtual try-on, Dong et
al. [29] further improved VITON and CP-VTON, which tackled the virtual try-on for different
poses. Han et al. [47] proposed ClothFlow to focus on the clothing regions and model the appear-
ance flow between source and target for transferring the appearance naturally and synthesizing
novel result. Beyond the abovementioned image-based virtual try-on works, Dong et al. [30] pre-
sented a video virtual try-on system, FWGAN, which learned to synthesize a video of virtual try-on
results based on a person image, a target try-on clothing image and a series of target poses. Increas-
ing the image resolution of virtual try-on, References[137, 215] further design novel architectures
for achieving multi-layer virtual try-on.

4.1.2 Benchmark Datasets. Style transfer for fashion contains two hot tasks, facial makeup and
virtual try-on. Existing makeup datasets applied for studying facial makeup synthesis typically
assemble pairs of images for one subject: non-makeup image and makeup image pair. As for virtual
try-on, since it is a highly diverse topic, there are several datasets for different tasks and settings.
We summarize the datasets for style transfer in Table 9.
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Fig. 7. Examples of pose transformation [128].

4.1.3 Performance Evaluations. The evaluation for style transfer is generally based on subjec-
tive assessment or user study. That is, the participants rate the results into some certain degrees,
such as “Very bad,” “Bad,” “Fine,” “Good,” and “Very good.” The percentages of each degree are then
calculated to quantify the quality of results. Besides, there are objective comparisons for virtual
try-on, in terms of inception score (IS) or structural similarity (SSIM). IS is used to evaluate
the synthesis quality of images quantitatively. The score will be higher if the model can produce
visually diverse and semantically meaningful images. However, SSIM is utilized to measure the
similarity between the reference image and the generated image ranging from zero (dissimilar) to
one (similar).

4.2 Pose Transformation

Given a reference image and a target pose only with keypoints, the goal of pose transformation is
to synthesize pose-guided person image in different posture while keeping personal information.
A few examples of pose transformation are shown in Figure 7. Pose transformation, in particular,
is a challenging task, since the input and output are not spatially aligned.

4.2.1 State-of-the-art Methods. A two-stage adversarial network PG2 [128] achieved an early
attempt on this task. A coarse image under the target pose was generated in the first stage and then
refined in the second stage. The intermediate results and final results are shown in Figure 7(a) and
(b) with two benchmark datasets. However, the results were highly blurred, especially for texture
details. To tackle the problem, the affine transform was employed to keep textures in the generated
images better. Siarohin et al. [162] designed a deformable GAN, in which the key deformable skip
elegantly transforms high-level features for each body part. Similarly, the work in Reference [5]
employed body part segmentation masks to guide the image generation. The proposed framework
contained four modules, including source image segmentation, spatial transformation, foreground
synthesis, and background synthesis that can be trained jointly. Further, Si et al. [161] introduced a
multistage pose-guided image synthesis framework, which divided the network into three stages
for pose transform in a novel two-dimensional (2D) view, foreground synthesis, and background
synthesis.

To break the data limitation of previous studies, Pumarola et al. [145] borrowed the idea from
Reference [230] by leveraging cycle consistency. In the meantime, the works in References [34,
129] formulated the problem from the perspective of variational auto-encoder. They can success-
fully model the body shape; however, their results were less faithful to the appearance of reference
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Table 10. Summary of the Benchmark Datasets for Pose Transformation Task

Dataset name Publish time # of photos Key features Sources

Human3.6M [72] 2014 3.6M It contains 32 joints for each skeleton self-collected

Market-1501 [225] 2015 32,668 Multiple viewpoints; the resolution of images is
128×64

A supermarket in Tsinghua
University

DeepFashion [123] 2016 52,712 The resolution of images is 256×256 Online shopping sites (Forever21
and Mogujie), Google Images

Balakrishnan et al. [5] 2018 N/A Action classes: golf swings (136 videos),
yoga/workout routines (60 videos), and tennis
actions (70 videos)

YouTube

N/A: there is no reported information to cite. M means million.

Table 11. Summary of the Benchmark Datasets for Physical Simulation Task

Dataset name Publish time # of photos Key features Sources

DeepWrinkles [93] 2018 9,213 Each image contains a colored mesh with 200K vertices. N/A

Santesteban et al. [156] 2019 7,117 It was simulated with 17 body shapes with only one
garment.

SMPL

MGN [7] 2019 N/A It contains 356 3D scans of people with different body
shapes, poses and in diverse clothing.

SMPL+G

RenderPeople 2019 N/A It consists of 500 high-resolution photogrammetry scans.
It was used by PIFu [153, 154] and ARCH [71]

RenderPeople

DeepFashion3D [229] 2020 N/A It contains 2,078 3D garment models with 10 different
clothing categories and 563 garment instances.

Reconstructed from real
garments

TailorNet [143] 2020 55,800 It contains 20 aligned real static garments with 1,782
different poses and 9 body shapes.

Simulated by the
Marvelous Designer

Sizer [171] 2020 N/A It includes 100 different subjects with 10 casual clothing
classes in various sizes in total of over 2,000 scans.

self-collected

N/A: there is no reported information to cite. M means million.

images, since they generated results from highly compressed features sampled from the data dis-
tribution. To improve the appearance performance, Song et al. [166]12 designed a novel pathway to
decompose the hard mapping into two accessible subtasks, semantic parsing transformation and
appearance generation. First, for simplifying the non-rigid deformation learning, it transformed
the posture in semantic parsing maps. Then, synthesizing the semantic-aware human information
to the previous synthesized semantic maps formed the realistic final results. Conducting the con-
cept of optical flow, Ren et al. [149] proposed a differentiable global-flow local-attention framework
to ensemble the features between source human, source pose, and target pose.

4.2.2 Benchmark Datasets. The benchmark datasets for pose transformation are very limited.
The most used two benchmark datasets are Market-1501 [225] and DeepFashion (In-shop clothes
retrieval benchmark) [123]. Besides, there is one dataset collected in videos [5]. All of the three
datasets are summarized in Table 10.

4.2.3 Performance Evaluations. There are objective comparisons for pose transformation, in
terms of IS and SSIM, which have been introduced in Section 4.1.3. Additionally, to eliminate the
effect of background, mask-IS and mask-SSIM were proposed in Reference [128].

12https://github.com/SijieSong/person_generation_spt.
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Fig. 8. Examples of physical simulation [191].

4.3 Physical Simulation

For more vivid fashion synthesis performance, physical simulation plays a crucial role. The above-
mentioned synthesis works are within the 2D domain, limited in the simulation of the physical
deformation, e.g., shadow, pleat, or hair details. For advancing the synthesis performance with
dynamic details (drape, or clothing-body interactions), there are physical simulation works based
on 3D information. Take Figure 8 for example. Based on a body animation sequence (a), the shape
of the target garment and keyframes (marked by yellow), Wang et al. [191] learned the intrinsic
physical properties and simulated to other frames with different postures that are shown in (b).

4.3.1 State-of-the-art Methods. The traditional pipeline for designing and simulating realistic
clothes is to use computer graphics to build 3D models and render the output images [44, 144,
180, 211]. For example, Wang et al. [180] developed a piecewise linear elastic model for learning
both stretching and bending in real cloth samples. For learning the physical properties of clothing
on different human body shapes and poses, Guan et al. [44] designed a pose-dependent model to
simulate clothes deformation. For simulating regular clothing on fully dressed people in motion,
Pons-Moll et al. [144] designed a multi-part 3D model called ClothCap. First, it separated different
garments from the human body for estimating the clothed body shape and pose under the clothing.
Then, it tracked the 3D deformations of the clothing over time from 4D scans to help simulate
the physical clothing deformations in different human posture. To enhance the realism of the
garment on human body, Lähner et al. [93] proposed a novel framework, which composed of two
complementary modules: (1) A statistical model learned to align clothing templates based on 3D
scans of clothed people in motion and a linear subspace model factored out the human body shape
and posture. (2) A cGAN added high-resolution geometric details to normal maps and simulated
the physical clothing deformations.

For advancing the physical simulation with non-linear deformations of clothing, Santesteban et
al. [156] presented a two-level learning-based clothing animation method for highly efficient vir-
tual try-on simulation. There were two fundamental processes: It first applied global body-shape-
dependent deformations to the garment and then predicted dynamic wrinkle deformations based
on the body shape and posture. Further, Wang et al. [191] introduced a semi-automatic method for
authoring garment animation, which first encoded essential information of the garment shape and
based on the intrinsic garment representation and target body motion, it learned to reconstruct
garment shape with physical properties automatically. Based only on a single-view image, Yang et
al. [211] proposed a method to recover a 3D mesh of garment with the 2D physical deformations.
Given a single-view image, a human-body database, and a garment-template database as input,
it first preprocessed with garment parsing, human body reconstruction, and features estimation.
Then, it synthesized the initial garment registration and garment parameter identification for re-
constructing body and clothing models with physical properties. Besides, Yu et al. [221] enhanced
the simulation performance with a two-step model called SimulCap, which combined the benefits
of capture and physical simulation. The first step aimed to get a multi-layer avatar via double-
layer reconstruction and multi-layer avatar generation. Then, it captured the human performance
by body tracking and cloth tracking for simulating the physical clothing-body interactions.
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Fig. 9. Left comparison is between DRAPE [44] and Santesteban et al. [156], while the right one compares

ClothCap [144] and Santesteban et al. [156]. Both are given a source and simulate the physical clothing

deformation in different body shapes.

4.3.2 Benchmark Datasets. Datasets for physical simulation are different from other fashion
tasks, since the physical simulation is more related to computer graphics than computer vi-
sion. Here, we discuss the types of input data used by most physical simulation works. Physical
simulation working within the fashion domain focus on clothing-body interactions, and datasets
can be categorized into real data and created data. For an example of real data, for each type of
clothing, Reference [93] captured 4D scan sequences at 60 fps in motion and dressed in a full-body
suit. As for created data, Reference [156] was based on one garment to create dressed character
animations with diverse motions and body shapes, and it can be applied to other garments. We list
the benchmark datasets for physical simulation in Table 11.

4.3.3 Performance Comparison. There are limited quantitative comparisons between physical
simulation works. Most of them tend to calculate the qualitative results only within their work
(e.g., per-vertex mean error) or show the vision comparison with state-of-the-art methods. Take
the comparison done by Santesteban et al. [156] for example in Figure 9.

5 FASHION RECOMMENDATION

Dressing well will make everyone look and feel confident and energetic. Tom Ford, a fashion expert
and film director, once even said, “dressing well is a form of good manners,” but not everyone
is a natural-born fashion stylist. In support of this need, fashion recommendation has attracted
increasing attention, given its ready applications to online shopping for fashion products. Relevant
literature on the research progress of fashion recommendation falls into three main tasks: fashion
compatibility, outfit matching, and hairstyle suggestion.

5.1 Fashion Compatibility

Fashion recommendation works based on fashion compatibility, which performs how well items
of different types can collaborate to form fashionable outfits. Also, it is worth mentioning that the
main difference between fashion item retrieval (Section 2.3) and fashion recommendation (Sec-
tion 5) is that the former learns the visual similarity between the same clothing type. In contrast,
the latter learns both visual similarity and visual compatibility between different clothing types.

5.1.1 State-of-the-art Methods. Veit et al. introduced Conditional Similarity Networks

(CSNs) [174], which learned non-linear feature embeddings that incorporated various notions
of similarity within a shared embedding using a shared feature extractor. The CSNs addressed the
issue of a standard triplet embedding that treated all triplets equally and ignored the sources of
similarity. Song et al. [168] integrated visual and contextual modalities of fashion items by em-
ploying the autoencoder neural model to seek the non-linear latent compatibility space. Following
Reference [168], Song et al. [167] integrated fashion domain knowledge to the neural networks to
boost the performance. Vasileva et al. [173] presented to learn an image embedding that respected
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Table 12. Summary of the Benchmark Datasets for Fashion Compatibility Task

Dataset name
Publish

time # of outfits
# of item

categories Key features Sources

FashionVC [168] 2017 20,726 2 Annotated with title, category, and description Polyvore.com

Vasileva et al. [173] 2018 68,306 19 Annotated with outfit and item ID, fine-grained
item type, title, and text descriptions

Polyvore.com

Style for Body
Shape [58]

Stylish Celeb- rity
Names

2018 N/A N/A 270 names of the top stylish female celebrities Ranker.com, fashion
magazine sites

Body
Measurements

Body measurements of 3,150 female celebrities Bodymeasurements.org

Stylish Celeb- rity
Images

347,948 Annotated with clothing categories and celebrity
names

Google Image Search

PolyVore-T [189] 2019 19,835 5 Categories includes top, bottom, shoes, bag, and
accessory

Dataset collected by [50]
from Polyvore

IQON3000 [169] 2019 308,747 6 Categories contains top, bottom, shoes, accesso-
ry, dress and tunic, and coat. The outfits within
this dataset was created by 3,568 users

The fashion web service
IQON

N/A: there is no reported information to cite.

item type. They first learned a single, shared embedding space to measure item similarity, then
projected from that shared embedding to subspaces identified by type. For learning the compati-
bility between clothing styles and body shapes, Hidayati et al. [57, 58] exploited human body mea-
surements and images of stylish celebrities. They presented a body shape calculator to determine
the type of body shape based on a set of body measurements, and a style propagation mechanism to
model the correlation between body shapes and clothing styles by constructing graphs of images
based on the body shape information and the visual appearance of clothing items, respectively.
For using category complementary relations to model compatibility, Yang et al. [214] proposed a
translation-based neural fashion compatibility model that contained three parts: (1) first mapped
each item into a latent space via two CNN for visual and textual modality, (2) encoded the category
complementary relations into the latent space, and (3) minimized a margin-based ranking criterion
to optimize both item embeddings and relation vectors jointly.

For making the fashion compatibility task more user-friendly, Wang et al. [189] introduced a
diagonal process for giving information about which item made the outfit incompatible. They
presented an end-to-end multi-layered comparison network to predict the compatibility between
different items at different layers and use the backpropagation gradient for diagnosis. Hsiao et
al. [65] proposed Fashion++ to make minimal adjustments to a full-body clothing outfit that have a
maximal impact on its fashionability. Besides, Song et al. [169] took user preferences into account
to present a personalized compatibility modeling scheme GP-BPR. It utilized two components,
general compatibility modeling and personal preference modeling, for evaluating the item–item
and user–item interactions, respectively.

5.1.2 Benchmark Datasets. The most used source for fashion compatibility datasets is the
Polyvore fashion website. It is an online shopping website, where the fashion items contain rich
annotations, e.g., clothing color, text description, and multi-view outfit images. We list the bench-
mark datasets for fashion compatibility in Table 12.

5.1.3 Performance Evaluations. For measuring the performance of fashion compatibility works,
area under the receiver operating characteristic curve (AUC) is the most used metric. AUC
measures the probability that the evaluated work would recommend higher compatibility for pos-
itive set than negative set. The AUC scores range between 0 and 1.
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Fig. 10. Examples of outfit matching task [64].

Fig. 11. A comparison between product-based and scene-based complementary recommendation [87].

5.2 Outfit Matching

Each outfit generally involves multiple complementary items, such as tops, bottoms, shoes, and
accessories. A key to a stylish outfit lies in the matching fashion items, as illustrated in Figure 10.
However, generating harmonious fashion matching is challenging due to three main reasons. First,
the fashion concept is subtle and subjective. Second, there are a large number of attributes for
describing fashion. Third, the notion of fashion item compatibility generally goes across categories
and involves complex relationships. In the past several years, this problem has attracted a great
deal of interest, resulting in a long list of algorithms and techniques.

5.2.1 State-of-the-art Methods. Fashion recommendation for outfit matching was initially in-
troduced by Iwata et al. [75]. They proposed a probabilistic topic model for learning information
about fashion coordinates. Liu et al. [117] explored occasion-oriented clothing recommendation
by considering the wearing properly and wearing aesthetically principles. They adopted a unified
latent SVM to learn the recommendation model that incorporates clothing matching rules among
visual features, attributes, and occasions. A similar idea of location-oriented recommendation sys-
tem was proposed by Zhang et al. [222]. They considered the visual match between the foreground
clothing and the background scenery and proposed a hybrid multi-label convolutional neural net-
work combined with the SVM (mCNN-SVM), which captured the uneven distribution of clothing
attributes and explicitly formulated the correlations between clothing attributes and location at-
tributes. More recently, Kang et al. [87] introduced “Complete the Look” aiming at recommending
fashion items that go well with the given scene. They measured both global compatibility (i.e., the
compatibility between the scene and product images) and local compatibility (i.e., the compati-
bility between every scene patch and product image) via Siamese networks and category-guided
attention mechanisms. The comparison of the product-based and the scene-based complementary
recommendation is shown in Figure 11.

A line with metric-based works then proposed to model item-to-item compatibility based on
co-purchase behavior. Veit et al. [175] utilized the co-purchase data from Amazon.com to train
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a Siamese CNN to learn style compatibility across categories and used a robust nearest neigh-
bor retrieval to generate compatible items. The study in Reference [136] modeled human prefer-
ence to uncover the relationships between the appearances of pairs of items by Low-rank Maha-
lanobis Transform that mapped compatible items to embeddings close in the latent space. He and
McAuley [54] later extended the work of Reference [136] by combining visual and historical user
feedback data. The proposed study incorporated visual signals into Bayesian Personalized Rank-
ing with Matrix Factorization as the underlying predictor. Besides, Hu et al. [68] addressed the
personalized issue by utilizing a functional tensor factorization method to model the user–item
and item–item interactions.

Most previous works mainly focused on top-bottom matching. However, an outfit generally
includes more items, such as shoes and bags. To address this issue, Chen and He [19] extended
the traditional triplet neural network, which usually receives three instances, to accept multiple
instances. A mixed-category metric learning method was proposed to adapt the multiple inputs.
A similar idea was also employed in Reference [160], where the proposed generator, referred to
as metric-regularized cGAN, was regularized by a projected compatibility distance function. It
ensured the compatible items were closer in the learned space compared to the incompatible ones.

As for methods with the end-to-end framework, Li et al. [100] formulated the problem as a
classification task, where a given outfit composition was labeled as a popular or unpopular one.
They designed a multi-modal multi-instance model, that exploited images and meta-data of fashion
items, and information across fashion items, to evaluate instance aesthetics and set compatibility
simultaneously. Inspired by image captioning of Reference [28], Han et al. [50] built a model based
on bidirectional LSTM (Bi-LSTM) to treat an outfit as a sequence of fashion items and each item
in the outfit as a timestep. A Bi-LSTM model was then utilized to predict the next item conditioned
on previously seen ones, where the objective was to maximize the total probability of the given
positive sequence. The model was able to achieve three tasks, i.e., fill-in-the-blank (fashion item
recommendation given an existing set), outfit generation conditioned on users’ text/image inputs,
and outfit compatibility prediction. Another work [64] also borrowed the idea from natural lan-
guage processing, which meant that an outfit was regarded as a “document,” an inferred clothing
attribute was taken to be a “word,” and a clothing style was referred to the “topic.” The problem
of outfit matching was formulated with the topic model. The combinations similar to previously
assembled outfits should have a higher probability, which can be employed as the prediction for
compatibility, and then solve the outfit matching problem.

For building the bridge between fashion compatibility and personalized preference in outfit
matching tasks, there are a few methods for this goal. A personalized clothing recommendation
system, namely i-Stylist that retrieved clothing items through the analysis of user’s images, was
developed in Reference [155]. The i-Stylist organized the deep learning features and clothing prop-
erties of user’s clothing items as a fully connected graph. The user’s personalized graph model later
derived the probability distribution of the likability of an item in shopping websites. Dong et al. [33]
took user preference and body shape into account for measuring the user-garment compatibility
to deal with personalized capsule wardrobe creation task. They introduced an optimization-based
framework with dual compatibility modeling, which can both evaluate the garment-garment com-
patibility and user-garment compatibility. Besides, Yu et al. [219] worked for synthesizing new
items automatically for recommendation. Given a query item, the personalized fashion design
network they proposed would generate a fashion item for the specific user based on fashion com-
patibility and user preference. Furthermore, Chen et al. [22] presented an industrial-scale Per-

sonalized Outfit Generation (POG) model. They deployed POG on platform Dida in Alibaba to
recommend personalized fashionable outfits for users. For providing more concrete recommenda-
tion for users, Hou et al. [62] proposed a semantic attribute explainable recommender system to
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Table 13. Summary of the Benchmark Datasets for Outfit Matching Task

Dataset name
Publish

time
# of

outfits
# of item

categories Key features Sources

What-to-Wear [117] 2012 24,417 2 Occasion-oriented work; Annotated with
full-body, upper-body, or lower-body

Online shopping photo
sharing sites

Styles and
Substitutes [136]

2015 773,465 N/A Annotated with 4 categories of relationship: (1)
users who viewed X also viewed Y, (2) users who
viewed X eventually bought Y, (3) users who
bought X also bought Y, (4) users bought X and Y
simultaneously

Amazon.com

Hu et al. [68] 2015 28,417 3 Annotated with categories, names, and
descriptions

Polyvore.com

He et al. [54] 2016 598.353 N/A Annotated with users’ review histories Amazon.com,
Tradesy.com

Journey Outfit [222] 2017 3,392 N/A Location-oriented work; Annotated with 14 travel
destinations

Online travel review
sites

Li et al. [100] 2017 195,262 4 Annotated with title, category, and number of
likes

Polyvore.com

Han et al. [50] 2017 21,889 8 Each item contains a pair – product image and a
corre sponding text description

Polyvore.com

Hsiao et al. [64] 2018 3,759 ≥ 2 Annotated with meta-labels, e.g., season (winter,
spring, summer, fall), occasion (work, vacation),
and function (date, hike)

Polyvore.com

Fashion
Collocation[19]

2018 220,000 5 Annotated with independent and ready for
wearing (off- body module) or dependent
(on-body module), or a bounding box

Chictopia.com, Wear.net,
FashionBeans.com

Pinterest’s Shop The
Look [87]

2019 38,111 10 Annotated with categories of shoes, tops, pants,
hand- bags, coats, sunglasses, shorts, skirts,
earrings, necklaces

Pinterest.com

bodyFashion [33] 2019 75,695 N/A It contains 11,784 users with his/her latest
historical pur- chase records in total of 116,532
user–item records

Amazon.com

Yu et al. [219] 2019 208,814 N/A It contains 797 users with 262 outfits and each
outfit with 2 items, i.e., a top and a bottom

Polyvore.com

POG [33] 2019 1.01M 80 It is composed of 583,000 individual items Taobao.com, iFashion

N/A: There is no reported information to cite; M means million.

not only recommend for personalized compatible items but also explain the reason why the system
recommends it.

5.2.2 Benchmark Datasets. Since different papers are under various settings and most of the
datasets for outfit matching are not publicly available, almost every work collected their own
dataset. We list the benchmark datasets for outfit matching in Table 13. Note that the outfit data-
base in References [50, 54, 64, 68, 87, 100, 136] comprises the images of each single item, while in
References [19, 75, 117] consists of an outfit in a single image.

5.2.3 Performance Evaluations. As the evaluation protocol for fashion compatibility (Sec-
tion 5.1.3), AUC is the most used metric for outfit matching methods. While some methods are
also evaluated with NDCG, i.e., References [62, 68, 117], and fill-in-the-blank accuracy, i.e., Refer-
ence [22, 50]. Unfortunately, there is no unified benchmark for outfit matching, both in datasets
and evaluation metrics. Therefore, we are unable to give a comparison of different methods.

5.3 Hairstyle Suggestion

Hairstyle plays an essential role in physical appearance. People can look completely different with
a different hairstyle. The right hairstyle can enhance the best facial features while concealing the
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Table 14. Summary of the Benchmark Datasets for Hairstyle Suggestion Task

Dataset name
Publish

time
# of

photos Key features Sources

Yang et al. [213] 2012 84 Frontal face photos Hair stylists from three
salons

Beauty e-Experts
[118]

2013 1,605 It consists of 20 hair color classes, three different hair
length attributes (long, medium, or short), three differ- ent
hair shape attributes (straight, curled, or wavy), and two
kinds of hair volume (dense or normal)

Professional hairstyle and
makeup websites (e.g.,
Stylebistro.com)

Hairstyle30k [216] 2017 30,000 It contains 64 different hairstyles Various web search engines
(e.g., Google, Flicker, and
Bing)

flaws, bringing out natural beauty and style. However, choosing the right hairstyle requires careful
consideration as not all hairstyles suit all facial features.

5.3.1 State-of-the-art Methods. In recent years, many papers have been published related to
hairstyles focusing on how to model and render hairstyles with computer graphics [9, 35, 141,
157, 202] or on how to segment hair automatically [147, 151, 182, 183, 203]. Only a few studies
have been devoted to finding the right hairstyle to suit one’s face. In the following, we review the
literature concerning hairstyle recommendation.

The pioneering work in Reference [213] suggested suitable hairstyles for a given face by learning
the relationship between facial shapes and successful hairstyle examples. The proposed example-
based framework consisted of two steps: the statistical learning step and the composition step. The
purpose of the statistical learning step was to find the most suitable hairstyle through Bayesian
inference-based model that estimated the probability distributions of hairstyles to a face image.
They proposed to use the ratio of line segments as the feature vector for characterizing the shape
of each face, and α-matting-based method to indicate hair area in the image. The most suitable
hairstyle obtained from the statistical learning step was further superimposed over a given face
image to output the face in a suitable hairstyle.

Liu et al. later developed the Beauty e-Experts system [114] to automatically recommend the
most suitable facial hairstyle and makeup, and synthesize the visual effects. They proposed to
use the extracted facial and clothing features to simultaneously learn multiple tree-structured
super-graphs to collaboratively model the underlying relationships among the high-level beauty
attributes (e.g., hair length and eye shadow color), mid-level beauty-related attributes (e.g., eye
shape and mouth width), and low-level image features. Besides, they also proposed a facial image
synthesis module to synthesize the beauty attributes recommended by the multiple tree-structured
super-graphs model.

5.3.2 Benchmark Datasets. Table 14 provides benchmark datasets for assessing the perfor-
mance of hairstyle suggestion methods. It is worth mentioning that Hairstyle30k [216] is by far
the largest dataset for hairstyle-related problems thought the proposed method is not for hairstyle
suggestion.

5.3.3 Performance Evaluations. Yang et al. [213] conducted a user study to evaluate the effec-
tiveness of their proposed system, while Liu et al. [114] computed the NDCG that measures how
close the ranking of the top-k recommended styles is to the optimal ranking. However, we are
unable to give comparisons on different hairstyle suggestion methods due to inconsistent bench-
marks for different papers.

ACM Computing Surveys, Vol. 54, No. 4, Article 72. Publication date: June 2021.



Fashion Meets Computer Vision: A Survey 72:31

6 APPLICATIONS AND FUTURE WORK

The future of the fashion world will be shaped in large part by advancements in the technology,
which is currently creeping into the creative domains, because it is starting to mimic human neu-
rons. In the following, we discuss emerging uses of fashion technology in some application areas
and future work that is needed to achieve the promised benefits.

6.1 Applications

The most popular AI application from the top global apparel industry leaders currently imple-
menting AI appears to be AI chatbots, also called smart assistants, which is used to interact with
their customers. The common use-cases that are covered are as follows: (1) Responding to cus-
tomer service inquiries and providing suggestions related to product searches through a social
media messaging platform, e.g., “Dior Insider”; (2) helping customers navigate products online or
in-store to find product(s) that align with their interests, e.g., “Levi’s Virtual Stylist,” “VF Corpora-
tion,” “Macy’s On Call,” and “Nordstrom”; and (3) virtual assistant to encourage exercise/behavior
adherence, e.g., “Nike on Demand.”

Moving forward, AI technology will have explosive growth to power fashion industry. In ad-
dition to connecting with the customers with the use of AI chatbots, we identify there are four
other ways that AI is transforming the future of fashion and beauty, which include the following:
(1) Improving product discovery. Visual search makes it easier for shoppers to find, compare, and
purchase products by taking or uploading a photo. One example is Google Lens,13 which allows
mobile users to perform searches for similar styles through Google Shopping from the photos
they take. (2) Tailor recommendation. To keep costs low, brands need to better predict customer
preferences by gathering and analyzing purchase behavior, customer profile, as well as customer
feedback. Using this data alongside AI and machine learning allows fashion retailers to deliver a
personalized selection of clothes to customers. Stitch Fix14 is one of the most popular AI fashion
companies in this category. (3) Reducing product return. Customers have more options to choose
from than ever when it comes to making purchases. To gain the loyalty of the consumers, one
recent focus of the fashion retailer has been to extend an excellent customer service experience
not only at the point of purchase but at the point of return as well. AI technology has the power
to better engage customers with the personalized shopping experience that leads them to make
more informed and confident purchase decisions, which in turn helps retailers lower return rates.
Sephora15 is an example of a retailer that has developed this strategy. (4) Powering productivity and

creativity. The promise of AI for fashion brands that can marry design creativity with digital in-
novation has a powerful competitive advantage in the market. The AI technology enables fashion
brands to sift through consumer data to gain insights on which product features their customers
are likely to prefer.

6.2 Breaking the Limitations of Annotation

Large-scale data annotation with high quality is indispensable. However, current studies are
mainly based on relatively small-scale datasets, which is usually constrained by annotation costs
and efforts. Faced with such enormous amounts of fashion- and beauty-related data, how to gener-
ate high coverage and high precision annotations to considerably reduce the cost while preserving
quality remains a hot issue. Therefore, more efforts in the development of cost-effective annota-
tions approach on fashion- and beauty-related data are necessary to address the problem.

13https://lens.google.com.
14https://www.stitchfix.com.
15https://www.sephora.com.
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6.3 Overcoming Industry Challenges

There are still many challenges in adopting fashion and beauty technologies in industry, because
real-world fashion and beauty are much more complex and strict than in the experiments. The
main issue is related to system performance, which is still far from human performance in real-
world settings. The demand for a more robust system consequently grows with it. Accordingly, it
is crucial to continue to pay attention to handling data bias and variations to improve the true-
positive rate while maintaining a low false-positive rate. Moreover, with the rising interest in
mobile applications, there is a definite need to perform the task in a light but timely fashion. It
is thus also beneficial to consider how to optimize the model to achieve higher performance and
better computation efficiency.

7 CONCLUSION

With the significant advancement of information technology, research in CV and its applications in
fashion have become a hot topic and received a great deal of attention. Meanwhile, the enormous
amount of data generated by social media platforms and e-commerce websites provide an oppor-
tunity to explore knowledge relevant to support the development of intelligent fashion techniques.
Arising from the above, there has much CV-based fashion technology been proposed to handle the
problems of fashion image detection, analysis, synthesis, recommendation, and its applications.
The long-standing semantic gap between computable low-level visual features and high-level in-
tents of customers now seems to be narrowing down. Despite recent progress, investigating and
modeling complex real-world problems when developing intelligent fashion solutions remain chal-
lenging. Given the enormous profit potential in the ever-growing consumer fashion and beauty
industry, the studies on intelligent fashion-related tasks will continue to grow and expand.
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